Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Ming Gu,^a Yun-Wu Wang^b and Xiu-Rong Hu^a*

^aCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and ^bZhejiang University City College, Hangzhou, Zhejiang 310015, People's Republic of China

Correspondence e-mail: huxiurong@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.003 Å R factor = 0.056 wR factor = 0.169 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-[4-Dimethylamino-1-(4-fluorophenyl)-1-hydroxybutyl]-3-(hydroxymethyl)benzonitrile

In the structure of the title compound, $C_{20}H_{23}FN_2O_2$, there are two independent molecules showing different conformations. The molecules form centrosymmetric dimers *via* $O-H\cdots N$ or $O-H\cdots O$ hydrogen bonds.

Received 11 July 2005 Accepted 19 July 2005 Online 23 July 2005

Comment

The title compound, (I), was prepared as an intermediate in the synthesis of fluoxetine, a known antidepressant (Hervas *et al.*, 1998). There are two independent molecules in the asymmetric unit, showing different conformations (Fig. 1). In molecule A, there is an $O1-H45\cdots N2$ hydrogen bond (Table 2), and atom O2 of the hydroxy group is almost coplanar with the benzene ring (C2/C3/C5/C6/C8/C9). In molecule B, there is an O3-H46 \cdots O4 hydrogen bond, and atom O4 of the hydroxy group deviates from the plane of the benzene ring (C22/C23/C25/C26/C28/C29). The aminobutyl chain shows different conformations in the two molecules corresponding to the different hydrogen-bond interactions. The dihedral angles between the two benzene ring planes in molecules A and B are 86.03 (8) and 83.08 (9)°, respectively.

In the crystal structure of (I), each independent molecule forms a hydrogen-bonded dimer (Fig. 2). For molecule A, atom O2 acts as a hydrogen-bond donor to atom O1 at (1 - x, 2 - y, 1 - z), generating a centrosymmetric $R_2^2(8)$ dimer (Bernstein *et al.*, 1995) centered at $(\frac{1}{2}, 1, \frac{1}{2})$. For molecule B, atom O4 acts as a donor to atom N4 at (1 - x, 1 - y, -z), forming an $R_2^2(8)$ dimer centered at $(\frac{1}{2}, \frac{1}{2}, 0)$.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The two independent molecules, A and B, in (I), showing the atomlabeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The two independent hydrogen-bonded centrosymmetric dimers in the crystal structure of (I). Hydrogen bonds are shown as dashed lines.

Experimental

1-Bromo-4-fluorobenzene (1.6 g, 9 mmol) in tetrahydrofuran (THF) was converted to the Grignard reagent, with ethyl magnesium bromide (1.3 g, 9.9 mmol), and added to 5-cyanophthalide (1.4 g, 8.8 mmol) in THF over a period of 3 h at 273–276 K. The mixture was stirred overnight at room temperature, and a THF solution of $Me_2N(CH_2)_3MgCl$ [from 8.8 mmol (1.1 g) $Me_2N(CH_2)_3Cl$] was added over a period of 6 h at 283–285 K. The mixture was stirred overnight and worked up to give a toluene solution of (I). After removal of the solvent, a colorless crystalline solid was obtained in 70% yield.

Crystal data

$C_{20}H_{23}FN_2O_2$	Z = 4
$M_r = 342.41$	$D_x = 1.214 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 8.1512 (5) Å	Cell parameters from 6362
b = 12.4991 (6) Å	reflections
c = 18.928 (1) Å	$\theta = 2.2-27.4^{\circ}$
$\alpha = 100.708 \ (1)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 96.0057 \ (8)^{\circ}$	T = 295 (1) K
$\gamma = 94.896 \ (3)^{\circ}$	Block, colorless
$V = 1873.6 (2) \text{ Å}^3$	0.41 \times 0.28 \times 0.24 mm

Data collection

Dulu concenton	
Rigaku R-AXIS RAPID	8398 independent reflections
diffractometer	4412 reflections with $F^2 > 2\sigma(F^2)$
ω scans	$R_{int} = 0.023$
Absorption correction: multi-scan	$\theta_{max} = 27.4^{\circ}$
(<i>ABSCOR</i> ; Higashi, 1995)	$h = -10 \rightarrow 10$
$T_{min} = 0.947, T_{max} = 0.980$	$k = -16 \rightarrow 16$
16267 measured reflections	$l = -24 \rightarrow 24$
Refinement	
Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.056$	independent and constrained
$wR(F^2) = 0.169$	refinement
S = 1.00	$w = 1/[0.0028F_o^2 + \sigma(F_o^2)]/(4F_o^2)$
6842 reflections	$(\Delta/\sigma)_{max} < 0.001$

6842 reflections 451 parameters

 Table 1

 Selected geometric parameters (Å, °).

F1-C13	1.360 (3)	O4-C24	1.421 (3)
F2-C33	1.366 (3)	N1-C7	1.136 (4)
O2-C4	1.405 (3)	N3-C27	1.140 (4)
01-C1-C2-C3	-61.7 (3)	O3-C21-C22-C29	-115.5 (2)
O1-C1-C16-C17	64.0 (3)	O3-C21-C36-C37	-58.2(2)
C5-C3-C4-O2	0.6(3)	C22-C23-C24-O4	-66.8(3)
C2-C3-C5-C6	0.1 (3)	C21-C36-C37-C38	144.1 (2)
C1-C16-C17-C18	-81.6(3)	C36-C37-C38-N4	179.6 (2)
C16-C17-C18-N2	75.9 (3)		

 $\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
O1−H23···N2	0.94	1.74	2.671 (3)	172	
$O2-H22\cdots O1^i$	0.93	1.87	2.795 (2)	172	
$O3-H46\cdots O4$	1.04	1.61	2.634 (3)	171	
$O4-H45\cdots N4^{ii}$	0.99	1.70	2.686 (3)	171	

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z.

The high-angle reflections ($\theta > 26^{\circ}$) were not used in the refinement, because they were weak. The hydroxy H atoms were located in difference Fourier maps and included in the refinement based on the as-found O—H bond lengths, but their isotropic displacement parameters were refined and fixed in the final stage. The other H atoms were placed in calculated positions, with C—H = 0.95 Å, and included in the refinement in a riding model, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm carrier atom})$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

References

- Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
 Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Hervas, I. & Artigas, F. (1998). *Eur. J. Pharmacol.* **358**, 9–18. Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.