Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-[4-Dimethylamino-1-(4-fluorophenyl)-1-hydroxy-butyl]-3-(hydroxymethyl)benzonitrile

Jian-Ming Gu, ${ }^{\text {a }}$ Yun-Wu Wang ${ }^{\text {b }}$ and Xiu-Rong Hu*

${ }^{\text {a }}$ Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and ${ }^{\mathbf{b}}$ Zhejiang University City College, Hangzhou, Zhejiang 310015, People's Republic of China

Correspondence e-mail:
huxiurong@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.169$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{2}$, there are two independent molecules showing different conformations. The molecules form centrosymmetric dimers via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ or $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The title compound, (I), was prepared as an intermediate in the synthesis of fluoxetine, a known antidepressant (Hervas et al., 1998). There are two independent molecules in the asymmetric unit, showing different conformations (Fig. 1). In molecule A, there is an $\mathrm{O} 1-\mathrm{H} 45 \cdots \mathrm{~N} 2$ hydrogen bond (Table 2), and atom O 2 of the hydroxy group is almost coplanar with the benzene ring ($\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 8 / \mathrm{C} 9$). In molecule B , there is an $\mathrm{O} 3-\mathrm{H} 46 \cdots \mathrm{O} 4$ hydrogen bond, and atom O 4 of the hydroxy group deviates from the plane of the benzene ring (C22/C23/C25/C26/C28/C29). The aminobutyl chain shows different conformations in the two molecules corresponding to the different hydrogen-bond interactions. The dihedral angles between the two benzene ring planes in molecules A and B are 86.03 (8) and 83.08 (9) ${ }^{\circ}$, respectively.

In the crystal structure of (I), each independent molecule forms a hydrogen-bonded dimer (Fig. 2). For molecule A, atom O 2 acts as a hydrogen-bond donor to atom O 1 at $(1-x$, $2-y, 1-z)$, generating a centrosymmetric $R_{2}^{2}(8)$ dimer (Bernstein et al., 1995) centered at $\left(\frac{1}{2}, 1, \frac{1}{2}\right)$. For molecule B, atom O 4 acts as a donor to atom N 4 at $(1-x, 1-y,-z)$, forming an $R_{2}^{2}(8)$ dimer centered at $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$.

Received 11 July 2005 Accepted 19 July 2005 Online 23 July 2005

Figure 1
The two independent molecules, A and B , in (I), showing the atomlabeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
The two independent hydrogen-bonded centrosymmetric dimers in the crystal structure of (I). Hydrogen bonds are shown as dashed lines.

Experimental

1-Bromo-4-fluorobenzene ($1.6 \mathrm{~g}, 9 \mathrm{mmol}$) in tetrahydrofuran (THF) was converted to the Grignard reagent, with ethyl magnesium bromide $(1.3 \mathrm{~g}, 9.9 \mathrm{mmol})$, and added to 5 -cyanophthalide (1.4 g , 8.8 mmol) in THF over a period of 3 h at $273-276 \mathrm{~K}$. The mixture was stirred overnight at room temperature, and a THF solution of $\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{MgCl}\left[\right.$ from $\left.8.8 \mathrm{mmol}(1.1 \mathrm{~g}) \mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}\right]$ was added over a period of 6 h at $283-285 \mathrm{~K}$. The mixture was stirred overnight and worked up to give a toluene solution of (I). After removal of the solvent, a colorless crystalline solid was obtained in 70% yield.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{2}$
$M_{r}=342.41$
Triclinic, $P \overline{1}$
$a=8.1512$ (5) A
$b=12.4991$ (6) \AA
$c=18.928$ (1) \AA
$\alpha=100.708(1)^{\circ}$
$\beta=96.0057$ (8$)^{\circ}$
$\gamma=94.896(3)^{\circ}$
$V=1873.6$ (2) \AA^{3}

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.214 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6362 \\
& \quad \text { reflections } \\
& \theta=2.2-27.4^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=295(1) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.41 \times 0.28 \times 0.24 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.947, T_{\text {max }}=0.980$
16267 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.169$
$S=1.00$
6842 reflections
451 parameters

8398 independent reflections 4412 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-10 \rightarrow 10$
$k=-16 \rightarrow 16$
$l=-24 \rightarrow 24$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[0.0028 F_{\mathrm{o}}{ }^{2}+\sigma\left(F_{\mathrm{o}}{ }^{2}\right)\right] /\left(4 F_{\mathrm{o}}{ }^{2}\right)$
$(\Delta / \sigma)_{\text {max }}<0.001$ 。
$\Delta \rho_{\max }=0.39 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

F1-C13	$1.360(3)$	$\mathrm{O} 4-\mathrm{C} 24$	$1.421(3)$
F2-C33	$1.366(3)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.136(4)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.405(3)$	$\mathrm{N} 3-\mathrm{C} 27$	$1.140(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-61.7(3)$	$\mathrm{O} 3-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 29$	$-115.5(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 16-\mathrm{C} 17$	$64.0(3)$	$\mathrm{O} 3-\mathrm{C} 21-\mathrm{C} 36-\mathrm{C} 37$	$-58.2(2)$
$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$0.6(3)$	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{O} 4$	$-66.8(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5-\mathrm{C} 6$	$0.1(3)$	$\mathrm{C} 21-\mathrm{C} 36-\mathrm{C} 37-\mathrm{C} 38$	$144.1(2)$
$\mathrm{C} 1-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$-81.6(3)$	$\mathrm{C} 36-\mathrm{C} 37-\mathrm{C} 38-\mathrm{N} 4$	$179.6(2)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{N} 2$	$75.9(3)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H23 $\cdots \mathrm{N} 2$	0.94	1.74	$2.671(3)$	172
O2-H22 $^{\mathrm{i}}$	0.93	1.87	$2.795(2)$	172
O3-H46 $^{\text {O }}{ }^{4}$	1.04	1.61	$2.634(3)$	171
O4-H45 $\cdots \mathrm{N}^{\text {ii }}$	0.99	1.70	$2.686(3)$	171

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x+1,-y+1,-z$.
The high-angle reflections $\left(\theta>26^{\circ}\right)$ were not used in the refinement, because they were weak. The hydroxy H atoms were located in difference Fourier maps and included in the refinement based on the as-found $\mathrm{O}-\mathrm{H}$ bond lengths, but their isotropic displacement parameters were refined and fixed in the final stage. The other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.95 \AA$, and included in the refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

organic papers

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hervas, I. \& Artigas, F. (1998). Eur. J. Pharmacol. 358, 9-18
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

